General Certificate of Education June 2009 Advanced Level Examination

MATHEMATICS Unit Further Pure 4

MFP4

Wednesday 17 June 2009 9.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P15717/Jun09/MFP4 6/6/6/ MFP4

Answer all questions.

- 1 Let $\mathbf{P} = \begin{bmatrix} 1 & 4 & 2 \\ -1 & 2 & 6 \end{bmatrix}$ and $\mathbf{Q} = \begin{bmatrix} k & 1 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}$, where k is a constant.
 - (a) Determine the product matrix PQ, giving its elements in terms of k where appropriate.

 (3 marks)
 - (b) Find the value of k for which **PQ** is singular. (2 marks)
- 2 (a) Write down the 3×3 matrices which represent the transformations A and B, where:
 - (i) A is a reflection in the plane y = x; (2 marks)
 - (ii) B is a rotation about the z-axis through the angle θ , where $\theta = \frac{\pi}{2}$. (1 mark)
 - (b) (i) Find the matrix **R** which represents the composite transformation

- (ii) Describe the single transformation represented by **R**. (2 marks)
- 3 The plane Π has equation $\mathbf{r} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$.
 - (a) Find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n} = d$. (4 marks)
 - (b) Show that the line with equation $\mathbf{r} = \begin{bmatrix} 7 \\ 1 \\ 4 \end{bmatrix} + t \begin{bmatrix} 10 \\ 1 \\ 5 \end{bmatrix}$ does not intersect Π , and explain the geometrical significance of this result. (4 marks)

4 (a) Show that the system of equations

$$3x - y + 3z = 11$$

 $4x + y - 5z = 17$
 $5x - 4y + 14z = 16$

does not have a unique solution and is consistent.

(You are not required to find any solutions to this system of equations.) (4 marks)

(b) A transformation T of three-dimensional space maps points (x, y, z) onto image points (x', y', z') such that

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x - y + 3z - 2 \\ 2x + 6y - 4z + 12 \\ 4x + 11y + 4z - 30 \end{bmatrix}$$

Find the coordinates of the invariant point of T.

(8 marks)

5 The points A, B, C and D have position vectors **a**, **b**, **c** and **d** respectively, relative to the origin O, where

$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \text{ and } \mathbf{d} = \begin{bmatrix} 5 \\ 5 \\ 11 \end{bmatrix}$$

(a) Using scalar triple products:

- (i) show that \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are coplanar; (2 marks)
- (ii) find the volume of the parallelepiped defined by AB, AC and AD. (4 marks)
- (b) (i) Find the direction ratios of the line BD. (2 marks)
 - (ii) Deduce the direction cosines of the line BD. (2 marks)

6 The plane transformation T is defined by

$$T: \begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

where $\mathbf{M} = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$.

- (a) Evaluate det M and state the significance of this answer in relation to T. (2 marks)
- (b) Find the single eigenvalue of **M** and a corresponding eigenvector. Describe the geometrical significance of these answers in relation to T. (5 marks)
- (c) Show that the image of the line $y = \frac{1}{2}x + k$ under T is $y' = \frac{1}{2}x' + k$. (3 marks)
- (d) Given that T is a shear, give a full geometrical description of this transformation. (2 marks)
- 7 The 2 × 2 matrix **M** has an eigenvalue 3, with corresponding eigenvector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and a second eigenvalue -3, with corresponding eigenvector $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

The diagonalised form of \mathbf{M} is $\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1}$.

- (a) (i) Write down suitable matrices **D** and **U**, and find U^{-1} . (4 marks)
 - (ii) Hence determine the matrix **M**. (3 marks)
- (b) Given that n is a positive integer, use the result $\mathbf{M}^n = \mathbf{U} \mathbf{D}^n \mathbf{U}^{-1}$ to show that:
 - (i) when *n* is even, $\mathbf{M}^n = 3^n \mathbf{I}$;
 - (ii) when n is odd, $\mathbf{M}^n = 3^{n-1} \mathbf{M}$. (6 marks)

- **8** (a) Matrix $\mathbf{M} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$. Without attempting to factorise, expand fully det \mathbf{M} .
 - (b) Matrix $\mathbf{N} = \begin{bmatrix} d & e & f \\ f & d & e \\ e & f & d \end{bmatrix}$. Find the product matrix \mathbf{MN} . (3 marks)
 - (c) Prove that the product

$$(a^3 + b^3 + c^3 - 3abc)(d^3 + e^3 + f^3 - 3def)$$

can be written in the form $x^3 + y^3 + z^3 - 3xyz$, stating clearly each of x, y and z in terms of a, b, c, d, e and f. (2 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page